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ABSTRACT

A Hugoniot pressure density relationship for homogeneous mixtures

is calculated from the .gonniot pressure density relationship of the

constituents. The ca lculated values are found to be in reasonable

agreement with available experimental data on mixtures of solids and

porous materials.
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I. INTRODUCTION

The motivation for the study here reported is the intersection

of two trends in technplogy; one being the increasingly wide.appli-

cations of now composite materials; the other being the rapid growth

of interest in the yesponse of structures and structural elements to

extremely strong disturbances.
Shock properties of mixtures have been computed [1] from tho

properties of the constituents by a method using the complete equation

of state. In this report, a means of computing approximate shock pro-

perties from the Hugoniot relationships alone is proposed. The results

of this study will be compared with experimental data for an unstruc-

tured or homogeneous composite. The simplified theory will also be

investigated as a means of predicting the shock response of porous

materials.

. In an earlier study, a theory for predicting the response of a

layered composite to a propagating shock was given [2]. It is to be

expected that the particular geometrical arrangement of the two consti-

tuents assumed in that study would strongly influence the propagation.

In the present study, the propagation of a shock wave through a compo-

site material having no geometrical structure is of interest. It is

anticipated that a comparison of the results from these two theories

will provide at least a qualitative indication of the influence of

structure on the propagation.

A related simple theory for the speed of propagztion of an

acoustic disturbance is also considered and is found to display certain

interesting features. The condition under which the speed of sound in a

mixture can be less than the sonic velocity of either constituent is

established. I:
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We wish to determine the shock response of a hoino~neous composite,

such as would result if powders of several constituents are prepared,
thoroughly mixed, end then pressed so as to form a solid having the

desir-d mass (or volume) fractions of the constituents. The resulting

composite is assumed to be macroscopically homogeneous, I.e.. it behaves

as a homogeneous and isotropic solid and, to the scale of the objects

which might be made from the composite material, no structure can be

seen. This criterion, it should be noted, may not be met in a shock

process, for the distance over which the load is applied is the thickness

of the shock, the product of the rise time of the shock and the speed

of propagation.

a. Theory for a Mixture of Two Constituents

We assume that any element of volume AVO at one atmosphere of

pressure contains a volume AVI of one constituent and AV2 of the

other. If the two constituents have initial densities pa and pat

then the masses of each of the two constituents are

H1 - AVI pol and
(1)

M2 - 'V2 PO

The initial average density of the composite is

p + f O0v (2)
ave 1 V 2

or

1 +L IM 2 (3)
'04ave "0o 91 a,

where fr, and fv' are initial volume fractions of the two components,

and fm1  and fa 2 are the mass fractions. It is implicitly assumed

that the mixture is simple, or non-reacting.



The average density of the composite after the passinS of the

M1 + M2

Vfave = f + AVf (4)

where M, and M2 are the masses of each constituent add AVlf

and LVaf the volumes occupied by these masses at the shock pressure.

Since Mi and the mass fractions fmi are assumed to be unchanged by

the shock, the possibility of phase change under pressure is excluded.

Thus

L=. •_•A+ •(5)
Ofave -f + )

Let us now assume that the respgnse of each constituent to a one

dimensional shock (the Hugoniot or shock adiabat) is known. For moaer-

ate pressures (hundreds of kilobars) this relationship can be approxi-

mated for many materials by the expression (3]

•P . A (P/P.) (6)

where P is the pressure behind the shock, measured above one atmosphere,

A and n are parameters of the material

p is the density behind the shock and

P 0 is the density in front of the shock.

A relationship of this form is uoually satisfactory only if no phase

changes occur over the pressure range where it is to be applied. Assuming

that the density of each constituent of the mixture at a given shock

pressure is the same as would ba found in a homogeneous sample at the

jmin pressure, and that each constituent can be described by Equation (6),



jaf1

p ni

7+and (7a)

2. fn (7b)

P02  jA2,

where the pressure, P. is the same in each constituent, and the

are densities behind the shock. Substituting (7a) and (7b)

and (3) into (5)

D~ave 2 2 ~ 1 n()r

Tfave fm' + LM_ - T1

Po1  P02

which provides a means of predicting the average density vs pressuref

relationship for a homogeneous mixture of two constituents, and

requires only the knowledge of an approximate Hugoniot relationship

for each.

The assumed presnure density relationship, Equation (6), was

selected only as a matter of convenience. Any form giving Hugoniot

pressure as a function of density which can be solved explicitly for

density as a function of pressure could as well be used and would lead

to a closed form expression analagous to Equation (8).

For many materials, Hugoniot data is readily available [41 in the

form

D C + SU(9

where

D is the shock speed

U the particle velocicty, and

C and S are empirical constants

It has been demonstrated that such data [5) may be put in the form

of Equation (4) through setting

A .~ and n 4S-1 (10)4S-1

L



hui LiLu bLeen shown [33 that ::universal" values of A and I
n may be used with good accuracy for a wide variety of materials.

These values are n - 5 and A - p0 C0
2 /5.5, where 10 is the initial

density and C, is the sonic velocity at standard conditions. By

using these properties of the constituents, Equation (8) can be used to

predict the Hugoniot pressure volume relationship even if Hugoniot

information for the constituents is not available.

K|. .. I



b. Response of a Hypothetical Copper-Polyethelene Mixture

The family of predicted shock pressure vs density ( • relation-

chipc; f or.I.L aU hyohiaia 6.uwpositp Uas der-ermined

through Equation (8). A linear Hugoniot relationship

D - 3.92 + 1.488 U (01)

with Po  - 8.93 gm/cm was chosen [6] for copper. All vclocitiep are

in units of kmisec. Equation (10) then yields parameters A - 279.7 kb

and a - 4,956. Available data [1] on polyethelene was used to deter-

mine the coefficients to be A - 9.64 kb and n - 5.875. The initial

dens;ity was taken to be .915 gm/cm . The results of these c;ilculations

are shown in Figure 1 as pressure vs density relationships for various

mass fractions of copper. A mass fraction of .9, for these materials,

corresponds to a mixture of 48% copper, by volume.

Once the Hugoniot pressure vs. density relationsbip has been computed,

the other shock properties can be determinpd from the Rankine-Hugoniot

jump conditions, i.e.

DP0 ave - (D-U)Pfave (12a)

P * Po DU (12b)
ave

where the composite is assumed ti be macroscopically homogeneous. O.e

particularly interesting result is given in Figure 2, where the shock

speed at various pressure levels is plotted against the mass fraction of

copper. The pronounced minimum at low pressures is particularly signifi-

cant and suggests the possibility of a minimum in the sonic velocity.

This subject will be treated in a later section.

c. Comparison with Theory for a Layered Composite

In Figure 3, shock speed vs. particle velocities as computed from

this theory (the solid lines) are compared with results obtained previously

for a layered composite having the same composition. Several mixtures

_ _ _ _ _



of aluminum with an assumed linear Hugoniot

-l - * d*•. - , *%w 0' .&Uj W-.

and polymethylmethacrylate, with an assumed linear Hugoniot of

D " 2.70 + 1.61U km/sec

were considered. The results showed a surprisingly good agreement

between the two computations, suggesting that the influence of the

layering assumed in [2] is much less than might be expected.

d. Theory for Several Constituents

The theory may be readily extended to mixtures of three or morw

constituents. Denoting the i th constituent by a subscript i, the

mass of that constituent in some volume element AV is

Mi- .Vi P.• " fViAVP % (13)

Then f.'1 (14)0Ovw E L•v i ,_.

i- Poij

and 'VOT 'P~ave' N'

Assuming each constituent may be described by Equation (6) or

+
i Li (7c)

since

ae

iav.

L , , . .: .,. , .. . . . . 77.* I



k we find

00av.e L1~ A
-f -v m (14a)

orPf~ ai* -1W

A- l (14b)
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III. APPLICATION OF THEORY TO POROUS MEDIA

Or particular interest are composites where one of the constituents
is air. such as wuold result from an imperfect packing. For air, hcwv |

ever, Equation (6). is not appropriate. We assume air to be a perfect

gas with constant ratio of specific heats ay and

P a PH (15a)

F E-Fq - Cv(T-T 0 ) (15b)

Using these and the Rankine Hugoniot Jump condition for a one dimen-

sional shock in a homogeneous material,

E-F 0  ¢ P l/p0 - .p } (i6:)2 (6

to determine a shock pressure vs density relationship for air which is

analagous to Fuation (6), we find, for y - 1.4

1; 30 /~- or2.- 6 P0 a1 (17)
0o b-P/po Po 6+P/po

Thus the average density of a composite containing N solid constituents

and air is

POave N6 +

i-1

where fVn is the initial volume fraction of air. For pressures of

interest for solids, P/Po >> 1 and h1e lIn.st. term may be written as

fva/6. Ezperimental data 171 on strong shocks in air indicates that

the compression under shocks of strength greater tan 200 bars is

closer to ten than the value of six predicted by treating air as a

perfect gas.I_ _ _ I



ba C omparlson of Theory with Experimental Results on Materials of
Low Porosity

Experimental data for a tungsten-copper mixture (ronte) was

obtained from tha lAterature [ andr compa.ed with values teicted

by this theory using

D - (4.029 + 1.237{U) km/sec (19)

-with po "19.22 gm/cn? for tungsten and

D- (3.90 + 1.489U) km/sec (0
with• Po =8. 93 gn/cj-' f'or copper.,

Constants A - .790 robp and n - 3.948 were determined for

tungsten and constants A - .280 mb and n - 4.956 were determined for

copper.

The average compositions of the mixtures for which Hugoniot data

was available are given in Table I. Shock pressures corresponding tn

the theoretical densities given in Table I were computed and compared

with the experimental data. The agreement between the experimental

data and the elementary theory was found to be remarkably good. It

can be seen, however, from Table I that the samples apparently have

some porosity; that is, the measured densities are not precisely

the theoretical density of a mixture having the stated vass fraction

of the two constituents, but are always somewhat lower. 1f the differ-

ences can be attributed to porosity, and the expression given by

Equation (18) takes proper account of the pressure of air, then Equation

(18) should yield values of final density which are in better agreement,

with the experimentally determined values than predictions as based on

Equation (8). For each composition (nominal mass fraction of each) the

quantity

p



prediction of the final density may be obtained by neglecting the

porosity and using the initial density the density which the corn- ji
I jzilLe would have it there were no porosity. 7he three methods

iiof calculation are compared in Figure 4. The solid lines indicate

typical pressure-density relationships as might be computed from

Equation (8) if the measured density p. or the theoretical density

(for no porosity) were used. The dashed curve shows the result to

be expected if Equation (18), taking account of porosity, were to

be used. Above the pressure at which the air is essentially com-

pressed to its limiting density, the diffrrence between the tuo

curves is very small.

The comparison of theory using Equation (18) and experiment

R is shown for each data point below 2mb in Figure 5. The predicted

final density was computed from Equation (18), with the volume

fraction of air being determined for each specimen from the stated

nominal composition and the measured density of that specimen. Aside

from the systematic deviation in the 45/55 samples, the agreement is

remarkably good, considering the drastic assumptions included in the

theory.

As was indicated earlier, once the Hugoniot. pressure density

relationship in eatablished, the other shock parameters may be

determcned. The copper-tungsten was found to have a mini= in the

isobars of the shock speed v mass fraction re.Utiohship as was found

i ~in the €opper-polyethe!cne xL,,r...re.



I
b. Comparison of Theory with Results on Materials of High

9 I Porosity

Much data has been obtained from shock experiments on porous
materials. Such data are of interest, for the use of porous samples

per-wits points on the equation-ot-state surface for the solid to be

reached in a shock experiment which are not attainable in a solid

specimen. The porous sample may also be viewed as a rather extrme

composite material of the type being considered herein. Shock data

on porous samples of copper, aluminum, beryllium, magnesium, and

uranium were obtained from the literature. and compared with the

predictions of Equation (18). Shock pressures are plotted a~inst

particle velocity, where the particle velocity for the theoretical

curve is determined through the use of Equations (12a) and (l2b).

The results of this comparison are shown in Figures 6, 7, and 8. In

all of these comparisons, fv is the volume fraction of the solid.

The comparison of theory and experiment for copper, using data from

McQueen, et al [1i shows a rather good agreement, particularly below

250 kb. i&perimental data for pure copper (fv - 1.0) have been

included for purposes of comparison. The theory generally under-

estimates the shock pressure in a porous material.

In Figure 7, data from McQueen, et al, has been combined with

the data from the Shock Wave Compendium 68]. The agreement here is

not as good as in the case of copper, the theory agnin leading to a

systematic underestimation of the shock pressure. The data for pure

aluminum is presented, for comparison, as the solid line. Limited

data for beryllium, magnesium, and uranium, all from the Compendium.
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are compared with the theory in Figure 8. The agreement here is

aa•in quite good for all three materials. Here the dashed lines

represent data for the solid raterial, while the solid line repre-

sents the predictions of the theory, and the indicated points are

data from the literature.

All of these calculations were made using y 1.4 (limiting

compression of six) for air. Repeating the calculations using a

limiting compression of ten for' air gave an Insignificanr change in

the results when plotted aa pressure vs particle velocity or pressure

vs shock velocity. The final density, however, is affected.

S, Ii
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S ~III. THE SPEED OF SOUND IN MIXTURES

It has been reported that the speed of sound in certain mixtures
has been found to be less than that for either constituent. In parti-

cular, the speed of sound in "bubbly" water has been found to be as

low as 65 ftlsec. [10l
It will be shown in what, follows that an elemntary theory for

the speed of sound in mixtures can be developed along the lines of the

development in the preceding section which does predict that certain

mixtures will have sonic velocities below those of either constituent.

Moreover, it will be shown to be unnecessary to assume any type of

deformation not present in the acoustic disturbance of the constituents

alone.

We will restrict our attention to homogeneous mixtures of two

constituents; that is, mixtures in which the particles of the consti-

tuents are substantially smaller than any other physical dimension pre-

sent in the problem. In an unbounded medium, the only dimension present

is the wavelength of the acoustic disturbance; hence the theory is valid

only for moderate and low frequencies. Further, we assume the relative

amounts of the two constituents to be the same at all points and, there

being no structure, the mixture to be isotropic.

Let two constituents of density p0 i and adiabatic bulk modulus

Bi at some reference pressure and temperature be mixed so as to create

a mixture at the same pressure and temperature having volume fraction

fi of each constituent. Since the mixture is assumed to be homogeneous,

any elemental volume, AV0 , of the mixture contains a volume

AV f AVC(21Vi"fa0 (22)

of each constituent. Since the mass of each constituent contained in

g is

A P0  (23)

" Palfi•V°

¶.



the density of the mixture is given by

PO Am Im1 + Am,- P 0 f I'avove (24)

i.e., the rule of mixtures.

Under a pressure change. , 2 - P-P0, the volume of each con-

stituent will change, but not necessarily in the same amount. By defi-

nitiorn,

dP .B (25)
dpli p00

Hence for such an infinitesimal pressure change,

P- Po P= e!_( -poi) (26)
Poj

The volume of each constituent is then

AVL -a__,L - f .AVn (27)Pi P__-o
S(1+Bi

and the average density at pressure P io

6ft + &Q Poave
Pave -V, + aV2  •. + (28)

P-Pe + P-Pn-.-

1 +

Defining an effective bulk modulus for the composite through

Bas - Pave dpave (29)

Sz coxst

We find

B13 ave fl + L2 (30)

BI B2

from which it is evident t1hat the inverse quantity, the compressibility,

• _ _ _ _ _ _ _ _ _ __-_: " 'i _ _.. ........ .... _, . V
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baLlaA.2.UU a Lu.Lc uZ w1ALuka.

The sonic velocity for eacla constituent is defined to be

do I, B(3I

Assuming the propagation through the mixture to be adiabatic, a sonic

velocity can be defined

Sdp a- B= (32)

Poave

Substituting the expression fc.r the average bulk modulus and denaity.

we find

Cave (ffI/ f/ ) (Po 1 f 1 + po%•r") (33)
B+ 23B

In terms of mass fractions, fm1  and f rather than volume fractions,

the above results become

P :Tý+ -M,(34)"0ave P I PO2

Bf - 1 -L -'M &
ave Po ave PO p0 B2 (35N

mfm / f+ M /p 0 2

C 2 _- - (36)
ave f f

PoI B£ P02  B2

replacing the modulus with the sonic velocities of the constituents

through Equation (32).

fro, •mSO~c !.21°'c'1(37) i(f" +Cave +1 f, + (37)~

P02C 2



The quantity Z. 0 V ATWVAPV4nff 
4
n i4-M V-.4.-.,-I, 4....~

the acoustic impedance. The minimum values in the sonic velocity
in such cases as aluminum and polyethelene, and copper and polyethelene

are below the sonic velocity of either constituent. However,
other combinations, such " copper and lead do not display

this phenomenon.

The speed of sound in a homogeneous mixture has been previously

found by Wood [11] to be
1/c 2 . [P 2 + (1 -)P] (38)

P 2 c 2 
2  P 1 c- (

where

c is the speed of sound in the mixture

a is the volume fraction of phase 2
p1 , p, are the densities of phases 1 and 2, respectively,

and

cl, c2 are the sonic speeds in each phase, defined by

c 2 . d P where the derivative is evaluated along anI d p l
appropriate thermodynamic path.

If a minimum in the sonic speed exists, the above expression for

the speed, c, au a function of volume fraction a, must have an extremal
value in the range 0 < O < 1. The sonic speed of such a mixture can

also be written as a function of the mass fraction, x, of phase 2

LP2x - a(39)

where the average density, Pa, of the mixture is given by

Pa= -P2 + (1 (1 - -2)/p - (40)

The sonic speed, in terms of x, is

2. z+ (41)P2 P i 2+
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where Z, are the imp~dAnrni - 7. ici '. .h ... •-

lent to Equation (37). Differentiating Equation (41) with respect to I
x, sebLLIi Lu zero, and solving ior the mass traction at which the

extremal value occurs, yields

x (B-2A)/BA (42)

where

A - - I (43a)

B- (Z 1/Z 2 )2 - 1 (43b)

But the mass fraction must lie in the range 0A x 1 1. Hence, for a

minimum in the sonic speed to occ.ar, the properties of the two materials
musL satisfy certaiiu inequalities. These are:

If A and B are both negative, then

2A 4 B - 2A/(l-A) (44)

If A and B are both positive, then

2A A- B A. 2A/(1-A) fo-r A % 1 and (45a)

B Z 2A for A. >1 (45b)

If A and B are of unlike sign, no ektramal value can occur. Testing

the sign of the second derivative of the expression given by Equation (41)

we find that the. extremal values which occur when the above inequalities

are satisfied are minimal. The shaded area in Figure (9)indicates the

range of values of density ratios and impedance ratios of the two mater-

lals for which a minimum in the sonic speed will occur.

This analysic can be applied to two perfect gasses, each satisfying

the adiabatic pressure volume relationship

L.- (46)Poi 0i)

} .,~p j



which leads to sonic velocities given by

Ci -Pi Yi (47)

For two such gasses, the ratio of impedances is

Y- ~(48)
Po 2 C2  Y2 P0

Thus, for two gasses having the same y, the par3meters A and B

ddefined by Equations (43a) and (43b) are identical and the sonic velo-

city of the mixture becomes

-_ 1+-I f• (49a)SCave 2 fmi + Pl fP 4a

C1  PO 2

or

S.. .. . . m fm y r" "(4 b

Cave 2
w yPo + a (49b)

i.e., a rule of mixtures. It should be noted, however, that the rule

of mixrures applies tn the squares of the sonic velocities. If, hcwever,

the two gasses do not have the same Y, then

B a 11U 1- A -- (50)
Y2 Po2  P02

Thus, if the denser material has a larger Y, a minimum in the sonic

velocity of the mixture is possible and will occur if inequality (45b)
is satisfied.

One other special case is of interest. If any two materials have

the same impedance, Z, then B - 0 and

Sfm m (51)
Cave z -L-+ L- = fmIC + iM2c2

PO; P 0 2

i.e., a rule of mixtures for the velocities.

___ ___ IL



IV SUMMARY

A simple theory for predicting the pressure density relation-

ship for a homogeneous composite under shock loading was developed

and uompared with some available experimental data. The good agree-

ment between theory and experiment suggests that tbh r 4mple theury
may have application to composites of this type. Since this theory

which assumes the composite to have no geometrical structure leads,

in the one case considered, to results surprisingly similar to pre-

diction from a theory for laminated composites, it may be that the
influence of structure is not gr'eat and a simple theory can be applied

with at least fair accuracy to composites which do display a geomet-

rical structure. This possibility should be considered further.

The new theory was compared with experimental data for highly

porous -aterials by treating the porous material as a homogeneous

composite of metal and air. The comparison shcws agreement which is

qualitatively good, but only in some cases are the predictions entirely

satisfactory.

Conditions under which the sonic speed of a mixture can be less

than that of either constituent are developed from the well-known

expression for the sonic speed. For a non-reacting mixture of two

phases, such a minimum can occur if certain inequalities relating the

ratio of densities and the ratio of impedances are satisfied. It is

necossary, but by no means sufficient, that the denser material have

the greater impedance.

-}
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Figure 9 Density and Impedance Ratios for which Xinim in Sonic
Speeds Can Occur
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